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Abstract 

The superposition of polarization-dependent X-ray 
transmission through crystals and resonant Bragg 
diffraction in crystals is investigated both theoretically 
and experimentally. The effects of anisotropic 
anomalous scattering (AAS) on the intensity of 
kinematically diffracted X-radiation emerging from 
an anisotropically absorbing crystal are described in 
a model that combines scattering in both forward and 
reverse directions. The model based on site- 
symmetry-compatible second-rank scattering-factor 
tensors for the absorbing atoms implies an additional 
intensity dependence on the rotation ( ~ )  about the 
scattering vector h. The derived intensity function, 
I(h; ~ ) ,  includes the usually factorized corrections 
for polarization and absorption. The model is applied 
to reflections in LiHSeO3 (orthorhombic, space group 
P212~21). The systematic extinction rules for the axial 
reflections with odd indices can be violated by AAS. 
These 'forbidden' reflections are then due exclusively 
to the partial structure of the Se 'edge' atom, and a 
set of possible Se-atom positions can be derived from 
the relative intensity variations, l(h; ~ ) ,  of only a 
few such 'forbidden' reflections. Experimental proof 
was obtained by synchrotron-radiation (using DORIS 
II at HASYLAB/DESY) X-ray diffraction measure- 
ments at the Se K-absorption edge (E = 12.654 keV) 
using a large synthetic LiHSeO3 crystal. Significant 
anisotropy of anomalous scattering was observed per- 
mitting studies of both 'forbidden' (0k0,001) and 
allowed (00/) reflections. With anisotropic absorption 
included in the model, indications for z(Se) and y(Se) 
were obtained from only four 'forbidden' 001 and 
three 'forbidden' 0k0 reflections, respectively. The 
experimental values are z(Se)=0.2375(125) and 
y(Se) =0.150 (5) compared to the true values z =  
0.23316 (4) and y =0.14709 (2). 

Introduction 

The anisotropy of the anomalous dispersion (AAD) 
of X-rays is an energy-dependent resonance effect 
which is likely to occur in the vicinity of an absorption 
edge of a bnnded atom. It is a consequence of 
chemical bonding and is reflected in two distinct 
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phenomena in the XANES and EXAFS regions, 
respectively: 

(i) dipole and quadrupole transitions from the 
initial 'core' state to allowed states which are related 
to the local symmetry and the chemical environment 
of the absorbing 'edge' atom; 

(ii) interference of the outgoing wave of 'true' 
photoelectrons, i.e. with positive energy, with the 
wave backscattered from surrounding neighbor 
atoms. 

In two previous contributions, Petcov, Kirfel & 
Fischer (1990) and Kirfel, Petcov & Eichhorn (1991), 
hereafter referred to as PKF and KPE, respectively, 
we have reported model calculations of and syn- 
chrotron radiation (SR) experiments on the effects of 
AAD on both X-ray transmission and kinematic X- 
ray diffraction. While the first paper dealt solely with 
dichroism and birefringence, investigated for ferro- 
electric lithium niobate, LiNbO3, the second study 
was devoted to prove FRED (forbidden reflection 
near-edge diffraction), i.e. violations of extinction 
rules for the cases of cubic cuprite, Cu20, and 
tetragonal rutile-type TiO2 and MnF2, and to corrob- 
orate the predicted intensity dependencies upon rota- 
tions (gt) around the scattering vector. Thus, in both 
studies we have given analytical evaluations of the 
properties of the transmitted or diffracted radiation, 
in each case on the basis of the Jones (1941, 1948) 
calculus which describes the interaction of polarized 
electromagnetic waves with crystalline material. The 
resulting intensity formulae could be verified by 
experiment (in case of diffraction on a relative scale 
only). The anisotropy of the refractive index (being 
absent in cubic crystals) was neglected for the rutile- 
type crystals. 

Fanchon & Hendrickson (1990) have published an 
investigation of the effect on the MAD (multiple- 
wavelength anomalous dispersion) phasing method 
giving a concise description of the diffraction model 
and reporting for the first time its use in a general 
least-squares program. Since the abbreviation AAS 
(anisotropy of anomalous scattering) used in their 
paper seems more appropriate than AAD and in order 
to use a common nomenclature in future work, we 
adopt it in the following. 
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In the present contribution we have extended our 
considerations to an explicit description of the effects 
caused by both diffraction and transmission in case 
of AAS. The models developed in PKF and KPE are 
now combined into a more general description which 
allows the calculation of an integrated reflection 
intensity as a function of: 

AAS of the 'edge' atom(s) in the structure; 
intensity and polarization of the incident radiation; 
size and shape of the crystal; 
azimuthal setting (qt) of the crystal. 
The resulting algorithm is rather involved and in 

practice requires evaluation by a computer. For 
special cases, however, e.g. restriction to serial reflec- 
tions and symmetric scattering of linearly polarized 
radiation from an extended face of an 'infinite' crystal, 
it is possible to obtain tractable intensity expressions 
which give a detailed account of the AAS effect on 
the intensities of both allowed and 'forbidden' reflec- 
tions, including anisotropic absorption. 

For a structure crystallizing in space group P2~2~21 
and with one 'edge atom' of a given element per 
asymmetric unit, we have recently discussed a scheme 
to determine a set of possible positions of that atom 
from the relative intensity variations l(h; qt) of a 
small number of 'forbidden' axial reflections (Kirfel 
& Petcov, 1991). This method being independent of 
the properties of the rest of the structure and requiring 
merely the occurrence of A_AS, but no quantities on 
absolute scale, needed to be tested experimentally. 

The following contribution is therefore divided 
into: 

(i) an attempt to develop a general model for the 
calculation of kinematic Bragg scattering from crys- 
tals exhibiting AAS; and 

(ii) an application to LiHSeO3 (space group 
P2~2~2~). This compound was chosen for two reasons. 
Firstly, the physical properties (dielectric, optical, 
piezoelectric, electro-optic, elastic and thermoelastic) 
exhibit considerable anisotropy (Reeker, Wallrafen, 
Haussiihl & Shao Zong Shu, 1984), implying a high 
probability for AAS. Secondly, the large specimen 
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described by the above authors was available for 
analysis. The investigation of AAS in LiHSeO3 thus 
includes the derivation of intensity functions from 
model (i) and experimental evidence of: 

the occurrence of AAS at the Se K-absorption 
edge; 

the validity and applicability of the derived model 
to the observations; 

the possibility to extract information about the edge 
atom's partial structure from only a few 'forbidden' 
reflections. 

Elastic scattering and transmission in the 
Jones formalism 

The incident and diffracted beam together define the 
scattering plane which may be vertical, as depicted 
in Fig. 1. Directions perpendicular and parallel to 
that plane are denoted by indices cr and 7r, respec- 
tively. A totally polarized electromagnetic plane wave 
of incident radiation may be represented by a complex 
column vector of the electric field 

ID)o:  ( A ° ~  
\Ao~/" (1) 

Transmission through and kinematic Bragg scatter- 
ing from a block inside a mosaic crystal of finite 
volume Vc can then be modeled in three steps (Fig. 
2), each describing the action of a separate optical 
element. 

(1) Transmissions of the incident beam along ti = 
r - r;. In a material exhibiting anisotropy of the refrac- 
tive index for X-ray energies, I D)0 will be changed 
to ID)I by an operator ~ ( t i ) = ~ i  describing 
anisotropic absorption and birefringence, 

ID(t,)),  = ~ , l D ) o .  (2) 

(2) Bragg diffraction under the scattering angle 
2 6~o ¢ 0 by the volume element d V. With the assump- 
tion that d V is so thin that there is no absorption of 
radiation and that the effect of interaction of the 
scattered and incident radiation fields can be neglec- 
ted, i.e. there is a refractive index of unity in d V, the 

Fig. 1. Scattering geometry for the diffractometer system (D) in 
the reflection position. The vertical scattering plane contains e,, 
and e~,. 

Fig. 2. Scattering-volume element d V inside the crystal. O: 
arbitrary origin; ti, to: vectors describing incident and reflected 
beams. 
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scattered radiation can be written as 

J(e)[D( t i ;h) )oo=J(e)q~(h)  D(ti)),. (3) 

~(h) is the scattering operator as defined below. 
Following the derivation of James (1982; p. 35), 
J(e )  is a scalar complex function which describes 
the superposition of waves reflected from subsequent 
net planes, e is a small angular offset from 
Oo (O = O0+ e). 

(3) Transmission of the outgoing beam alon 8 to = 
r o - r ,  which modifies the diffracted radiation ID)oo 
into 

J(e )  m(t ,;  h; to)),o=~£/~oJ(e) m(t,;h))oo. (4) 

For the derivation of the intensity it is assumed 
that ~rd~ and 932o are independent of small variations 
in O, i.e. they do not change upon rocking the crystal 
through the reflection position O0. This approxima- 
tion seems justified, since, even for a crystal rotation 
of one degree, the refractive index will not change 
appreciably with respect to the propagation directions 
of the incoming and outgoing waves. 

Then, the integrated intensity contribution of d V 
is obtained from 

dI(t~; h; to) 

=oa(D*(t,;  h; to) lD(t , ;  h; to))to ~ J(e)  2 de 

= K ( O ) o a ( D * ( t , ; h ; t o ) [ D ( t , ; h ; t o ) ) l o d V  (5a) 

where K (O) includes the scale factor and the Lorentz 
correction factor. Thus 

dI(t~; h; to) 

OC o ( O * Tfd "f q~ ( h ) + ~£f~ +o ~2~ o q~ ( h ) ~ , l O ) o d V (5b) 

where * and ÷ denote complex and Hermitian conju- 
gates, respectively. Since the reflections from the 
different blocks of the mosaic crystal are optically 
independent, i.e. there is no regular phase relationship 
between them, the total observed intensity is then 
obtained from the summation over all contributions 
d I  or from the integral: 

I ( h ) = K ( O ) ~ o , ( D *  D ) , o d V  (6) 

taken over the crystal volume V~. 
This three-step concept includes the conventional 

absorption correction of a reflection intensity, ex- 
tended to account explicitly for effects caused by AAS 
on both X-ray diffraction and transmission. This 
extension precludes the usual factorization of absorp- 
tion and polarization corrections. The model thus 
represents a combination of the treatments of trans- 
missions and kinematic Bragg diffraction as outlined 
in PKF and KPE, respectively. 

According to (5) and (6), the calculation o f / ( h )  
requires 

(i) evaluation of dI  and 
(ii) integration over V~. 

While (ii) is a procedure which may be carded out 
in one step, either analytically (under favorable 
geometric conditions) or numerically, (i) comprises 
a sequence of substeps which deal with the evaluation 
of the: 

(ia) refractive index of the material; 
(ib) refractive indices experienced by the or- and 

• r-polarized radiation components of both the incom- 
ing and outgoing beams; 

(ic) path lengths It,(r)l and Ito(r)l for OV at r; 
(id) operators 9~ and ~r~o from (ia)-(ic); 
(ie) structure-factor tensor F(h); 
(if) scattering operator ~(h); 
(ig) complex radiation vector [D)lo; 
(ih) complex conjugated product o l ( D * l D ) l o .  
This sequence is a helpful scheme for program- 

ming. However, for the discussion of (i), it is more 
instructive to start with (ig) and (ih). From PKF and 
KPE, the operators ~ and ~ are given by 2x2  
matrices with complex elements which, in general, 
depend not only on the scattering vector h but also 
on the azimuthal setting g', i.e. a rotation of the crystal 
around h. These dependencies will be discussed later. 
Here it suffices to define 

~(h)-- ,/).,,,. ~, 

and for a linear pleochroic and birefringent crystal 

~tj~x = (Mx,~ 0 ) ( x = i , o ) .  (7b) 
0 M x ~  

The description of the scattering operator ~, its 
~,lements • and absorption-free scattering was the 
subject of KPE which includes a detailed account of 
the practical evaluation of reflection intensities 
obtained by single-crystal diffractometry. 

For a discussion of scattering [items (ie) and (if)], 
the reader is therefore referred to the KPE paper. 
Given ~)2x and ~, it follows that 

ID>,o = ~ o ~ 9 ~ , l D > o  

/ 
I 

and 

o,<D* I D>, o = IAo~121M,~12(IMo~121~=.~l = 

+ IMo  l=l¢ , l = ) 

_ +lAo,~12lMi,~l=(IMo~l~l~,=l  ~ 

+ IMo  l l =.=12) + 2 Re 

(9) 
with 

(8) 

2 , 
Z M o ~ a M i g g  * 

2 , , + M o ~  Mi~¢~ ,~Mi~cb~ ,~ .  (10) 
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Equation (9) simplifies considerably and depends 
only on the moduli of the complex elements of the 

and ~ operator if 
(a) the incident radiation is purely or or *r polar- 

ized (A0~ = 0 or Ao~ = 0, respectively) or 
(b) Z = 0 owing to either ~ , ~  = ~.~,., = 0 or ~,~,~ = 

• ~,~ = 0 (see KPE). 
For unpolarized radiation, a scalar structure factor 

F ( h ) ( ~ , ~ , . = ~ , , ~ = 0 )  and an isotropic refractive 
index (Mi~. = M~,~), (9) reduces to 

di(h)oc[M~,~12[Mo**[2(l+cos22@)lF(h) 2. (11) 

(1 +cos 220 )  is the Thomson polarization-correction 
factor and 

M ~ .  2 Mo~[2=exp  {-lz[[t,(h; r) +[to(h;r)]} (12) 

corrects for the isotropic absorption. Thus, in (9) the 
M 2 factors describe merely the anisotropic attenu- 

ation, whereas Z accounts also for photon-crystal 
interactions involving a defined phase relation 
between the o-- and ,r-polarized components of the 
radiation. A reflection intensity can therefore be 
affected by X-ray birefringence as soon as the incident 
radiation is not totally tr or ,r polarized and 2, # 0 
[(a) and (b) not obeyed]. 

For an intensity contribution dI, the influence of 
birefringence is confined to the incoming radiation, 
i.e. different volume elements receive radiation of 
different properties. After scattering, the diffracted 
radiation will also, of course, be modified by birefrin- 
gence, although only with respect to its polarization 
in agreement with equation (13) of PKF. 

Synchrotron radiation (SR) is often considered as 
totally tr polarized. More precisely, it is elliptically 
polarized with the major axis of the section parallel 
to tr; 

where p[---1 is related to the degree of the linear 
horizontal polarization L~ = (1 -p2) / (1  +p2). p is 
typically about 0.2. Neglecting the second term of (9) 
containing p2  one obtains 

o l ( D * l D h o  

+ Mo,~]2 ~ , , ,  2) + 2p Re (i,$) ] 

:Ao2M,~ 2[Mo,.02 , ,  [2+ Mo. 2 ~ ,  2] 

Im 

+b Re(¢,~,~a,.,.~)]+lMo,.~2[a Im * 

+b Re (~, ,~,~,~)]} (13) 

with a Re (M*,,o,M~,~) and b Im * = = (M~Mi,~,r) .  For 
p = 0, (13) yields the effect of pure tr polarization. 

R e f r a c t i v e  i n d e x  a n d  X - r a y  t r a n s m i s s i o n  

Using atomic scattering-factor tensors f and the struc- 
ture-factor tensor F(h) as outlined in KPE, an 
anisotropic refractive index, n, can be written in a 
Cartesian system as (James, 1982) 

n = I - K ( B o  1) T F ( 0 ) ( B o  1) 

= I l l  - KF(0)o] - K(Bol)TF(0)a (Bo 1 ) (14) 

with 

K = A 2 eE/2*rmec2Vo, 

where eE/mec 2 is the electron radius and Vo is the 
unit-cell volume. 

Bo r describes the unit vectors of the reciprocal 
lattice with respect to a Cartesian system (C) in the 
crystal where Xc Ila*, Yc Ilao* XCo and Zc Ilao* ×b*.  
BoB~" = Go* can be obtained from the reciprocal metric 
tensor for a* = b* = c* = 1 (Bo and Go* are equal to I 
for orthogonal crystal axes, I is the matrix of unity). 

-i F(0)o-  cj(Zj + 
j k 

= m ~. cj ( Z~ + f'oj + iJ '~j ) (15) 
J 

- - L  " I! F(0),, ~ Cj[(fjk Go*f~j)+ '(f~k * " - - - G o  foj ) ]  
j k 

where n is the number of atoms in the asymmetric 
unit, m is the number of symmetry operations of the 
space group, cj is the multiplicity (occupation factor), 
Z is the atomic number andf~ andf~ are the isotropic 
anomalous dispersion correction factors. 

Since fjk is the complex scattering-factor tensor of 
the j th atom transformed by the rotational part of 
the kth symmetry operation, 

fig = Rkf~IR~. (16) 

n is described by a tensor which is invariant against 
all point-symmetry operations and F(0)~ determines 
the anisotropy of the refractive index. 

The index experienced by a tr-polarized wave is 
found from the intersection of the projection of n 
onto the plane perpendicular to the propagation 
direction with the tr direction 

n~ =e~ne~, (17) 

where e~, is the unit vector of the polarization direc- 
tion. The real part n~ of n~ and the corresponding 
absorption coefficient/~ (from the optical theorem) 
are then, with s ¢ = A/4*r, 

no, = 1 - K Re [ F(0)0 + ~,,,,,~(0)] 
(18) 

/z~ = ( r / s  r) Im [F(0)o+ ~ , ~ ( 0 ) ]  

with 

• o ~ ( 0 )  T -1 = e~,(Bo ) TF(0)a(Bol)e~. (19) 
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Using e~ for the incident and e~, for the outgoing 
beam (see Fig. 1) in the same way yields similarly 
n~, /z~ and n~,, /z~, from 0 ~ ( 0 )  and O~,~,(0), 
respecitvely. The complex numbers • thus corre- 
spond to the elements of ~ [equation (8) of KPE], 
calculated, however, for h = 0 and combinations of 
identical e. 

According to equation (9) of PKF, the elements of 
the operators ~ ,  and 9Jdo are then given by (t, = It,l) 

Mi,, = exp {-[  i(co/ c)n,, + t%,7/2]t,} 

(rift = erer or rrrr) 
(2o) 

Mo~ = exp { - [ i (co /c )n~  + tz~ff Z]to} 

(vv = cro" or 1r'rr') 

so that, with r /=  o- or 7r and v = o" or 7r', 

and Minn 2 = exp [--t.l, nnti] 
(21) 

]Mo~,]2= exp [-tz,~,to]. 

Setting /x--(tz~,~,+/x.~)/2 and zatz--/x~,o~-/z~, one 
obtains' for the coefficients a and b of (13): 

a = cos [(co/c)Atxh] exp [ - tzh]  
(22) 

b =s in  [(w/c)A/.,ti], 

showing that, for a given crystal orientation, the 
intensity contributions from the volume elements d V 
can be modulated by birefringence (i.e. through oscil- 
lating functions of the pathlengths h). 

Now one has to recall that the unit vectors of the 
polarization directions, %, e,. and e,.,, all taken with 
respect to the crystal, depend on h and the azimuth 
gt. Thus, the n..7 and /*,.7 values are actually 
n,.7(h; g') and/. . , , ,(h; g*), r /=  ~r, rr, rr', and must be 
evaluated from n [see (18)] for every combination 
(h; g'). For bisecting geometry, the calculations 
required for the transformation of a structure-factor 
tensor into the diffractometer system (D) have been 
described in detail in KPE. With the same arguments 
and notation, it is seen that the complex numbers 
O~..7 of (18) are given by equation (28) of KPE, 
slightly modified to 

0,..7 (h; ~ )  = e~o(alrX000) (Bo') rF(0)o 

x (Bol)(aIrXoO0) r%o.  (23) 

Xo(h) and Oo(h) are the matrices for rotations X and 
9~, respectively; Rt accounts for a g' rotation. From 
Fig. 1 follows (!)   os:)(coso) 
e~,n = , e,~n = / s i  0 , e,ro = - S o  ~9 • 

(24) 

The evaluation of (9) or (13) for a (h; ~ )  combination 
is now straightforward. Equation (23) yields both the 

elements O,7,,(h; ~ )  using F(h) and the elements 
Oa,,7(h; ~ )  of (18) using F(0)a. Insertion of the latter 
numbers into (18) then allows the calculation of (20)- 
(22) etc. 

Application to LiHSeO3 

(a) The structure-factor tensor F(h) in the diffrac- 
tometer system 

The general position of Se in LiHSeO3, space group 
P2~212~, Z = 4, allows the complex tensor of AAS to 
be general: 

fse = f~e + i f~ 

with elements 

fs~,,j = (f's~,u-f'o,s,6u) + i(f'se, ij--f~,Seaij). (25) 

f~,se, f~,s~ are the isotropic (free atom) real and 
imaginary AS correction terms and 60 is the 
Kronecker symbol. 

With any AAS of Li, H and O neglected, the appli- 
cation of equation (15) of KPE and (16) yields 

4 

F(h) = IF(h)o +)-'. Rk[f~ + if~] 
k 

T XRk T(h)k,seG(h)k,S~. (26) 

Omission of the subscript Se in the following means 
that reflections 001 are therefore described by 

F(00/) = IF(00/)o+ Tse(00/) 

x{(f~ + f2 exp [ rril]) exp [2rri/z] 

+(f3+f4exp[rdl])exp[-2rrilz]}. (27) 

With exp [trill - ( -1 )  I, Ctz = cos 2rrlz, Siz = sin 2rrlz, 
and including the common temperature factor 
Ts~(00l) = e x p  [--2rr212C*2U33] into f, (27) reduces to 

F(001) = IF(001)o + Ciz[ (f~ + t"3) + ( -  1)'(f2 + f4)] 

+iStz[(f~-f3)+(-1)'(f2-f4)]. (28) 

Application of the rotational matrices of the sym- 
metry operations in P2~2~2~ yields the tensors t"2 to 
f4 from f~, and one obtains for allowed reflections 
001, 1 = 2n, 

{f, lc, z ff12slz ) 
F(OOl)=IF(OOl)o+4 Stz f2zCtz ~ (29) 

lif2'o O f  3,C,z 

and for the 'forbidden' (systematically extinct) reflec- 
tions 001, I = 2n + 1, 

F(00/) = 4  ~ 0 

if31&z f32Ctz 
(30) 

where f j  are the complex numbers as defined in (24). 
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Corresponding expressions are found for the serial 
reflections h00 and 0k0. They all yield for h = 0 

) F ( 0 ) = I F ( 0 ) o + 4  f22 00 • (31) 1°o 
From (18) and (23) follow the principal values of the 
refractive index for f9 = 0 °. With the indices i = 1, 2, 3 
corresponding to the directions parallel to the crys- 
tallographic axes, a, b, c, real and imaginary parts 
are given by 

n, = 1 - ~ Re [ F(0)0 + 4f,] 
(32) 

/z, = (K/¢) Im [F(0)o+4f,] .  

To obtain the structure-factor tensors F(h)o and 
F(0; h)o in the dittractometer system D (see KPE), 
the F(h) have to be transformed according to (23). 
F(0; h)o is the structure-factor tensor for scattering 
in the forward direction when the crystal is in reflect- 
ing position h. For these calculations we assume the 
crystal to be mounted on the dittractometer so that 
UB = B. Then ~0(h00) = Xo(h00) = I and ~0(00l) = I, 
while X0(00l) is determined by K = 90 °. By inclusion 
of the ~ rotation around the scattering vector, the 
F(h; 1/')o tensors are (after rotation of the crystal into 
the reflecting position): 

(i) 'forbidden" 001, l = 2n + 1: 

F(O01; ~ )o  

l -ifa~St~ sin 
0 +fs2Ciz COS a/~ 

-/f~3 S~ sin 
=4 0 

I +f23Clz c o s  t/t 

~-/f~3S~ cos 
\ -f23Ct~ sin ~ 0 

-/f3,st~ cos ~ \ 
-f32ct~ sin qt~ 

°o ] 
(33) 

(ii) allowed OOl, l = 2 n :  

F(001; tF)o= IF(OOI)o+4F~ 

with 

F,,,, =f33Ctz 

Fal2-" Fa21 = Fal3 = Fa31 = 0  

Fo22= C~z(f~ sin 2 • +f22 cos 2 9 )  

-iS~(f~+f2~) sin 1/' cos 

F,,23 = C~(f~-f22) sin ~' cos 

+iS~(f~2sin 2 ~- f2~  cos 2 g") 

F,,32 = Ct~(f~-f22) sin 1/' cos 

+iS;z(f2~ sin 2 ~ --fiE COS 2 1/') 

Fa33 = Ciz(fll cos2 ~" +f22 s in2 ~ )  

+iS~(f~2+f~) sin 1/' cos 

(34) 

which reduces for the F(0; 001; ~ ) o  tensor to 

F(0; 001; ~ ) o  

[f33 0 
= I F ( 0 ) o + 4 / ~  f ,~sin2~+f22cos 2 ~  

(fll--f22) sin ap cos 

(f , ,-f22) sOin~cosrPI. 

fl ,  cos2 ~ + f22 sin2 ~ ] 

(35) 

( b ) The elements • of the operators Y£8, 

Equations (30) to (34) allow the calculation of the 
elements • of the operators ~ i ,  ~ o  and ~. 

(i) 'Forbidden' OOl 

q~,~(00l; ~ ) = 0  

~P~.,~(OOI; g') = 2 sin 20;[-iS~(f3~ -f l3)  sin 

+Clz(f32-f23) cos ap'] 

qb,,~,~(00l; ~ )  = - 4  cos Ot[if31S;z cos ~ (36) 

+f32C;z sin ~ ]  

@,~,,,(001; ~ )  = - 4  cos Ot[ifl3Stz cos a/t 

+f23 Ct~ sin ~ ]. 

For a symmetric AAS tensor fs~, q~a~'~=0 and 
q~,,~,, = ~ , , ~ .  The polarization of the scattered radi- 
ation is then always orthogonal to that of the incident 
radiation. Thus, g-polarized radiation will become 7r 
polarized after scattering and vice versa. 

(ii) Allowed OOl 

O~,~(OOl; alt)=4[Ctz(fll cos 2 x/t +f22 sin 2 ~ )  

+iStz(fl2+f2~) sin a/, cos 1/'] 

qb~,~(00l; ~ ) =  4{f33Ctz cos 2 (gt 

-[Ctz(fi, sin 2 gt +f22 COS 2 a/J) 

-iStz(f,2 + f2,) 

• ,,~,~(OOl; ~ )  = 

(iii) Consequently, one obtains for 
F(0; 00l; ~ )  tensor 

• a,~(00l; ~ )  = ~a~,~,(00l; ~ ) = 4 a  

qba~(O01; ap.)= q~o,~,,~,(00l; ~ ) = 4 b  

(37) 

x sin ~ cos ~ ]  sin 2 Or} 

- 4  sin Or[ Ctz(fll-f22)sin • cos 

+iSzz(f~2sin 2 rP-f21 cos 2 ~ ) ]  

4 sin 6)t[Clz(fll-f22) sin ~ cos 

+iStz(f21 sin 2 ~ -f~2 cos 2 ~) ] .  

the 
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with 

a = f l l  cos 2 1/-f-Jrf22 sin E 

b = A 3  c O S 2 0 l  (38) 

+ (fl l  sin2 ~ +f22 cos 2 gt) sin 2 O, 

and, from (18), 

no.o.(O01; ~ )  = n,~,,~, = 1 - K  Re [F (0 )o+4a ]  

n~.,~(001; ~ ) =  n~,~,= 1 - K  Re [F(0)o+4b]  
(39) 

/z~,,~(001; ~ )  =/z~,~,,= (K/~:) Im [F (0 )o+4a ]  

/x~.(001; gt) = /z , ,~ ,=  (K/C) Im [F(0)o+4b]  

which can be rewritten in terms of the principal values 
(32) as 

a~(001;  ~ )  = a,~,~,, 

= a~ cos 2 ~V + a2 sin 2 

a ,~(00/ ;  ~ )  = a~.~, (40) 

= (a~ sin E ~ + a2 cos 2 ~ )  

x sin 2 691 + a3 cos 2 O, 

where a stands for either n or/.i,. 

Intensities of OO1 reflections 

The following discussion is confined to a symmetric 
tensor fse and to totally o--polarized incident radiation 
being regarded as a good approximation for syn- 
chrotron radiation. Generalization is straightforward, 
but leads to very large expressions that are not useful 
in the present study. 

Neglecting the scale factor, one finds from (5), (13) 
and (19) for the scattering from a volume element d V: 

dI(t,;  001; to)OClM,~l~EIMo~l~l~,~l E 

E] d V 

oc {exp [- /z ,~(t i  + to)][ @,~,~12 

+ exp [--Id,~ti- I~,~,~.to ]1 a~,~l E} d V. 

(41) 

Considering a crystal of infinite thickness, cut parallel 
to (001) (Fig. 3), ti = t o=y / s in  tg, where y is the 

L tdy 
F 

Fig. 3. Scattering-volume element d V = F dy at depth y below the 
surface (AOB) of an infinite crystal. The beam cross section is d 2. 

distance of the volume element d V from the surface. 
Since d V = F dy and F = dE/sin O,, where d 2 gives 
the cross section of the beam, 

dI(y ,  OOl)oc {exp [ - (2 / z~ds in  e,)y] I ~,~l  E 

+exp  [-(/z,~,, +/z~.~)y/sin o,]l@~,~l 2} 

x(dE/sin O,) dy. (42) 

Integration yields then for fixed d and all 001 

I(OOI) (43) 

where all contributions are of course ~-dependent .  
Compared to neglecting the anisotropy of absorp- 

tion, i.e. using a mean coefficient /z, the relative 
intensity difference is given by 

AI/I = [I + - 

+ - -  

- ' .  (44) 

(i) 'Forbidden' reflections OO l 

From (36), (40) and (43) one obtains 

I(00/; ~ )  = {KI cos 2 ~91[A sin E 

+B cos 2 qt + C sin 2~]}  

X[/LLI "lt-/£3 -~t- (/-LE-- ]£3) sin 2 (gt 

+( /22-/xl)  cos 2 (gt sin 2 ~] -1  (45) 

with 

A =  f2312C~z; B =  A3 2StZz; 

, , , 3 J  23-  f 3f ,3)C, zS z. 

K, is a scalar factor and the /xi are given by (32). 
Thus, only off-diagonal elements of fse contribute to 
the reflection intensity which receives an additional 
modulation through a difference between/x~ and/ZE. 
Equation (45) is periodic in 7r with extrema at 1/' = 0 
and , r /2 if only C is negligible. Otherwise, the 
maxima and minima will be shifted to intermediate 

settings. 
Clearly, the numerator of (45) depends on the z 

coordinates of the Se atom, and the intensity ratio 

Q ( / ) =  I(00/; O)/l(OOl; 7r/2) 

= t a n  2 (27r/z){ f13 2[/Z2 +/t/,3-~- (/d, 1 --/[£3) sin 2 {~,]} 

× {[f2312[p.2 + p.l + (/x2 -/z3) sin 2 69,]}-' (46) 

contains phase information. The use of this informa- 
tion to determine the z coordinate has been proposed 

, and discussed in detail by Kirfel & Petcov (1991), 
however, without consideration of anisotropic 
absorption. The method is based on the ratio of any 
two 'forbidden'  reflections, Qzij = Q(li) /Q(li)  which 
cancels the a priori unknown AAS and leaves 

Qzq=[tan 2 (Errliz)/tan 2 (27rljz)]Y~ij. (47) 
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Y~u contains the anisotropy of absorption and 
depends also on the scattering angles. With Y = 1 (i.e. 
assuming isotropic absorption), it can be shown that 
the consideration of only a few Qz0 yields a common 
indication for z (0< z-< 0.25), even if the quotients 
are associated with large experimental errors. The 
systematic error introduced by using Y--1 in (47) 
can be estimated from (46), 

(A Y / Y )  = (a - b)(sin 2 ,O - sin E jO) 

x [ ( l + a  sin 2 Oj) ( l+  b sin 20~)] -~ (48) 

with a=(/Zl--/z3)/(/ZE+/Z3) and b=(/ZE-/Z3)/ 
(~2+g~). 

Obviously, this error increases with increasing 
anisotropy in/z and/or  increasing difference Og- O~, 
and should be corrected for if the /z~.2,3 values are 
known from absorption measurements. However, 
neglecting Y is not likely to compromise the method. 
Insertion into (48), for example, of rather unfavorable 
values such as/zl  :/z2 :/tJ. 3 = 1.3 : 0.6 : 1.0, O~ = 10 ° and 
Oj=45 ° yields only [AY/Y[ =0.17 which in view of 
an error discussion (Kirfel & Petcov, 1991) can be 
accommodated. Thus, model values I(00l; 0) and 
I(00l; 7r/2) should be obtained from fits of the full 
expression (45) (rather than its numerator) to 
observed I(00l; ~ )  curves, but assuming then 
isotropic/x in (47) will not give any consequences. 

(ii) Allowed reflections OOl 

Writing the structure factor F(OOl)o (which 
includes isotropic AS; compare KPE) as FAd+ iFBo, 
one obtains from (43) 

I(00l; g')  oc [IFo] 2 + 2FAo Re (~a~,,o,) 

+2FBo Im (q~<,~r,<~) + I q,:=,=l~]/2g== 

+ I~o.,=IE/(~== + ~==) (49) 
where q~<,,<, and q~,~,<, are given by (37). Equation 
(49) shows that the numerical evaluation bears no 
difficulty, but the full analytical representation 
becomes rather lengthy. 

It is instructive to consider (49) for two distinct 
cases. The first case assumes that ]F(00l)ol is much 
greater than [~ ' ,~ l  and [¢',,~'~1. Then (49) can be 
approximated by the product 

I(001; qt) oc (2/~1 COS 2 ~O' q- 2/z 2 sin 2 ~ ) - l  

x {IFol E+ 8FAd[ Czz(f'll cos 2 qt 

+f~2 sin 2 qt) _ Stzf'~2 sin 2 qz ] 

+8FBo[Ctz(f~l cos 2 qt 

+f~2 sin 2 qt) _ St~f~2 sin 2 ~ ]}. (50) 

For a conventional data collection in bisecting 
geometry (qt = 0), (50) reduces to 

I(00l; 0)o [IFol E+ 8C, z( FAof~ + FBof~)]/2tz~ (51) 

compared to IVol2/~ for isotropic AS. This com- 
parison is an instructive example of the general effect 
of AAS on the intensities of conventionally measured 
allowed reflections. Provided the diagonal elements 
of the 'edge' atom's f tensor deviate fromf~+ if'~ (here 
by f't~+ if'(~) there will be an intensity contribution. 
The relative change of intensity can then be approxi- 
mated by 

AI/  l=8Ctz(FAof'~ + FBof';,)/lFol 2 (52) 

and increases therefore with decreasing reflection 
strength. For the second factor of (49), the difference 
between the intensity values I(001; O) and I(001; ~-/2) 
is 

AI = Clz[FAo(f',,-f'22)+ FBo(f~,-f~2)] (53) 

showing that sign and modulation of the AAS contri- 
bution to I(00l; ~ )  can vary with increasing order 
of 1. 

The second case assumes that [fill 2 and I fEEl 2 are 
negligibly small compared to If~E[ 2. Then,/z~ --/z2 =/Zo 
and (49) reduces to 

I(001; 0) oc 1Fo12/2~o+ 16SLIf, EIE(sin E 0,) 
x [/Xo(1 + sin E Or) +/x3 cos E (91] -l (54) 

so that the AAS contribution is always positive and 
the relative intensity change is approximately 

AI/  I~-- 16S~z flEa(sin E 6)1)/ Fo a. (55) 

Again, the effect gains importance with decreasing 
reflection intensity, but also with increasing scattering 
angle. The difference between the intensity values of 
(49) at gr = 0 and ~ = 7r/2 tends to vanish, i.e. there 
will be no modulation of l(00l; ~ ) .  The observation 
of a significant intensity variation with qt implies 
therefore dominance of the first case, rather than the 
second. 

Comparing, finally, (51) and (54) shows an interest- 
ing consequence for the Bijvoet difference X(00I)=  
l(00l; 0 ) -  I(00 l; 0). While (54) implies for the latter 
case that AAS has no effect on X(00I), this is not 
true for the first case considered. Since FA(OOl)o and 
FB(OOl)o are different from FA(O0 f)o and FB(O0 f)o, 
respectively (while Czz=Crz), the corresponding 
differences will mix with f'~l and f~'~, and thus lead 
to a modified X(OOl). This argument can also, of 
course, be extended to general reflections and may 
therefore be taken as a warning that the determination 
of isotropic fg from experimental Bijvoet differences 
may become questionable in the immediate vicinity 
of an absorption edge. 

Experimental 
The LiHSeO3 sample was a large transparent syn- 
thetic crystal (20 x 30 × 50 mm) grown from aqueous 
solution. This crystal is depicted and described 
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thoroughly in the report of its physical properties 
(Recker, Wallrafen, Haussiihl & Shao Zong Shu, 
1984) to which the interested reader is referred for 
details. Here it suffices to say that the crystal is bound 
(among other faces) by a large pinacoid, {001} of 
11 x 18 mm, and a smaller one, {010} of 4x  18 mm, 
where the setting is chosen according to the structure 
determination by Chomnilpan & Liminga (1979), 
ao = 5.058, bo = 11.187, Co = 5.221 A. Thus, measure- 
ments of the serial reflections 001 and 0k0 from the 
extended faces (001) and (010), respectively, could 
be easily obtained provided care was taken that the 
area illuminated by the primary beam of 1 x 1 mm 
cross section remained unaltered upon rotation 
around the scattering vector. For the smaller face, 
(010), this demanded a sufficiently large scattering 
angle at the Se K-absorption edge (A =0.9797.~, 
12.6545 keV) so that reflections 0k0 with k < 7 were 
not accessible. 

The experiments were carried out on the two-axis 
diffractometer installed at beam line G3 at HASYLAB 
(Bonse & Fischer, 1981) during dedicated beam time 
(DORIS II being operated at 3.7 GeV, critical energy 
9 keV, maximum injected current 100 mA). The radi- 
ation was monochromatized by an asymmetrically cut 
Ge(311) flat double-crystal arrangement with fixed 
exit (AE/E "-- 3 x 10-4). The experimental set-up and 
the procedure are described in detail in KPE. The 
only difference concerns the access of the K-absorp- 
tion edge which was detected by monitoring the 
fluorescence yield from the large (001) face upon 
tuning the energy. 

The crystal was mounted and oriented with [100] 
perpendicular to the beam axis and [001] or [010], 
respectively, pointing into the vertical direction for 
2 0  = 0 ° so that any ~ setting could be read directly 
from the 45 circle. 

Results and discussion 

The proof of FRED and the ensuing location of the 
optimal resonance energy were performed by 
intensity measurements, I(003; E),  at ~ = 0 °. Fig. 4 
shows the variations of both the intensity of the 
'forbidden' reflection 003 and of the fluorescence 
yield from the (001) face upon passing across the Se 
K-absorption edge. The large and narrow peak of 
1(003) occurring on the low-energy side of the spec- 
trum must be attributed to multiple scattering 
(Umweganregung). It disappeared quickly upon 
changing ~. This peak has not been removed in order 
to show how multiple scattering can interfere with 
FRED. Measurements for sufficient numbers of gr 
settings are therefore always required for safe dis- 
crimination. 

All measurements, I(h; gr), were carried out at the 
energy of the second broad intensity maximum (Fig. 
4) at about 10 eV above the edge (where the edge 

position is assigned to the center of the steep increase 
of fluorescence). 

'Forbidden" reflections 

I ( g  r) observations are depicted in Figs. 5 (a)-(d) 
for the 'forbidden' reflections 001,003, 005 and 007. 
Similar results for the likewise 'forbidden' reflections 
070, 090 and 0,11,0 are omitted. As described in KPE, 
each experimental point represents the integrated net 
intensity obtained from an on-line normalized to-scan 
profile (61 steps,/to., = 0.06 °, 5-10 s counting time per 
step). The assignment of error bars is omitted, not 
only for clarity but also because: 

(i) errors from counting statistics alone were 
usually of about the size of the dots (except for very 
weak intensities); 

(ii) errors due to energy instability (beam instabil- 
ity) could not be pinpointed, i.e. a correlation between 
the scatter of the intensity values and the permanently 
recorded vertical beam position was not detectable 
(it is, however, clear that energy instability is a major 
source of error and that measurements at a higher 
speed than permitted by the present experiment 
would be beneficial to both data quality and its 
assessment); 

(iii) multiple scattering contributions can never be 
entirely excluded; 

(iv) errors arising from the integration procedure 
(manual background assignment) may be consider- 
able at ~ settings for which the AAS effect is small. 

Assuming totally o--polarized radiation, fits of the 
model curve (45) to the observations were carried out 
using the program MINUIT (James & Roos, 1987). 
For this purpose, (45) was used for the cases of 

(a) neglecting and 
(b) including anisotropic absorption. 
Overall agreement indices R, intensity values at 

gr = 0 o and gr = 90 ° taken from the adjusted intensity 
functions and quotients Q=I(h;O)/I(h; 17"/2) are 
listed in Table 1. Also included are the respec- 
tive quotients Q=o and Qy,j carrying the structural 
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Fig. 4. Energy dependence of the 'forbidden' reflection 003 (g' = 
0 °) at the Se K-absorption edge (filled circles). Filled squares 
indicate the fluorescence yield from the (001) face. 
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Table 1. Results of model fits to observed I(h; ~ )  values 

R: convent ional  overall  agreement  index; I (0) ,  I (7r /2) :  relative intensity values taken f rom adjusted I funct ions;  Q: observed intensity 
ratio I(O)/I(~r/2); for  definit ion o f  Q~o, QyiJ see text (equat ion 47); IA: assuming isotropic absorpt ion;  AA: consider ing anisotropic  

absorpt ion.  

IA AA 

QZ31 
Qzst 
Q~71 
Q~53 
Q~73 
Qz75 

Qy97 

Qyl 1,9 

hkl R I(0) I ( z r /2 )  Q R I(0)  I ( w / 2 )  Q 

001 0.058 102.5 2.78 36.87 0.051 99.5 0.98 101.5 
003 0.097 134.2 0.794 169 0.081 140 4.82 28.96 
005 0.040 49.3 4.46 11.05 0.032 48.3 3.51 15.31 
007 0.068 27.9 3.57 7.8 0.070 28.0 3.76 7.46 
004 0.021 11.0 13.5 0.019 10.9 13.25 
006 0.012 12.9 10.1 0.011 13.1 10.25 

4.58 0.285 
0.300 0.151 
0.212 0.073 
0.065 0.528 
0.046 0.257 
0.707 0.487 

070 0.125 2.94 30.75 0.0956 0.071 0.67 25.3 0.0265 
090 0.061 3.9 8.07 0.483 0.062 3.7 7.88 0.469 

0110 0.060 2.38 4.8 0.496 0.053 2.51 5.0 0.502 
5.05 17.7 
5.19 18.94 
1.02 1.07 

information (47). Comparing the results of the fits 
(a) and (b), one finds similar R values but consider- 
able numerical differences between corresponding Q 
and as a result between the Qzo and Qyij values. These 
differences are clearly due to the small and less- 
reliable intensities entering Q. 

All curves of Fig. 5 as well as the R values show 
that the observed intensity variations of the 'forbid- 
den' reflections can be explained satisfactorily by the 
developed scattering model. For case (b), the mostly 
lower agreement indices indicate an improved 
description of the ~ dependence so that the treatment 
of absorption [(41)-(43)] appears justified [except 
for two reflections, probability estimates based on 
Hamilton's (1965) R test are above 95%]. As a con- 
sequence, the I(0) and I(7r/2) values taken from fits 
(b) are considered more reliable than those from (a). 

Allowed reflections 

For the investigated 'forbidden' reflections (except 
070), the effect of anisotropic absorption on I(h; ~ )  
appears small. This picture remains qualitatively 
unaltered for the allowed reflections 004 and 006, 
both depicted in Fig. 6. Fits of (49) to the observed 
intensities yielded agreement indices R=0 .019  
(0.021 for isotropic/z) for 004 and R = 0.011 (0.012) 
for 006 (Table 1). The two I(h; ~ )  distributions 
show not only significant variations (+10%), but 
moreover a reversal of sign for AI(00I )=  
I(OOl;O)-I(OOl;w/2), i.e. AI(004) is positive, 
zaI(006) negative (Table 1). In view of the discussion 
of (49), these different gt dependencies imply that 
IA,I 2 and IA212 cannot be neglected compared to If~212, 
the second term of (49) must dominate, and (50)-(53) 
are applicable. Thus, Figs. 6( a ) and (b) are instructive 

illustrations of the effect caused by mixing the real 
and imaginary parts, FAo, FBo, of the structure factor 
(including isotropic AS) with the AAS contributions. 

Localization of the 'edge atom' 

In space group P212~21 any four symmetry- 
equivalent atoms are located at z, ½-z  and ½+ z, - z  
(the same relations hold for x and y). Therefore, it 
suffices to evaluate a z indication for the Se atom 
within the range 0 <- z < 0.25. For the investigated 001 
reflections the functions Qzo (calc.) [(47), Y = 1] were 
calculated for increments zaz = 0.001, and depicted in 
Fig. 7. These curves possess mirror symmetry with 
respect to z =0,  ~, ~, 3. They vary over orders of 
magnitude and they become generally steeper the 
larger the product of the involved indices, lilj. 
Towards z = 0.0 and z = 0.25 the functions flatten out 
upon approaching finite values. This feature implies 
that the derivation of a coordinate close to 0.0 or 0.25 
will demand more accurate Q values (small gradients 
dQziJdz) than that of intermediate values (where 
large gradients prevail). 

Using the experimental quotients Qzu(obs.) of 
Table 1, column AA, z(Se) indications were derived 
by comparison with the Qzu(calc.) functions. For the 
present evaluation all z coordinates for which 
Qz0(calc.) was found within the range Q~(obs.) + 50% 
(+100%) for Qz~j(obs.)> 0.3 (<-0.3) were selected and 
represented by the black bars of Fig. 8(a). The result 
is a pattern of possible z coordinates. The z range 
common to all pairs of reflections was then considered 
significant and its center was taken as the experi- 
mental z coordinate with an uncertainty given by the 
range itself. Fig. 8(a) yields a unique z(obs.)= 
0.2375 (125) (see combinations 5,3 and 7,5) compared 
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Fig. 5. Intensity variations upon gt rotation around the scattering 
vector and fits of model functions (assumed 100% o--polarized 
radiation) for 'forbidden' 001 reflections. Solid line: neglecting 
anisotropic absorption; dotted line: including anisotropic 
absorption. (a) 001, (b) 003, (c) 005, (d) 007. 
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Fig. 6. Intensity variations of allowed 001 reflections. (a) 004, 
(b) 006. Key as Fig. 5. 
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to the 'true' coordinate z = 0.23316 (4) (Chomnilpan 
& Liminga, 1979). Thus, the experimental value devi- 
ates only by Az = 0.004 or 0.02 ~ from the true one. 

The present assignment of uncertainty ranges to 
the Qz,y is arbitrary and the lengths of the bars in Fig. 
8(a) and the derived z indication and its uncertainty 
depend on that choice. But the assignment is not 
critical as other choices show. Provided the Qz0 uncer- 
tainties are chosen large enough to yield overlapping 
bars, similar z indications are obtained though with 
different uncertainties. The assignment of a 100% 
error to the small Q=o(obs.) seems justified since these 
values are not only less reliable but also systematically 
overestimated in view of the rr component of the 
incident radiation being neglected in the intensity 
model. 

Applying the corresponding procedure to Qy,j(obs.) 
yielded the results given in Fig. 8(b). Compared to 
Fig. 8(a) this pattern shows much smaller ranges of 
indications due to the larger Qy0 values fitting into 
regions with large gradients. Here, we find two indica- 
tions, y(obs.)=0.150 (5), and another at y(obs . )= 
0.200. The first compares well with the 'true' coordi- 
nate, y=0.14709 (2) (Ay=0.0029-~0.032 A); the 
second is wrong. This ambiguity must be attributed 
to the availability of only three (0k0) reflections and 
particularly to the lack of a reflection with k < 7. (The 
allocated beam time precluded measurements on a 
fourth reflection, 0,13,0, which would have increased 
the resolution.) On the other hand, the result indicates 
that the method can work even under restricted condi- 
tions. 

Finally, it is interesting to note that applying the 
described procedure to the Q=u values obtained 
without considering anisotropic absorption (Table 1, 

z obs 

%' I! 
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7.3 ~ m m i  
5,3 i • l i n n  
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(a) 
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Fig. 8. Experimental fractional-coordinate indications (obs.) for 
the Se atom as obtained from combining l(h,; 1/') and I(hy; 1/'). 
For details see text. (a) z(Se), (b) y(Se) (z and y indicate 'true' 
values). 

column IA) yielded a comparable z indication [z = 
0.240 (10)] only upon discarding Qz31 and assigning 
an uncertainty range of 0.0-0.6 to Qzij(obs.) <- 0.3. 
Similarly, the y coordinate was found correctly upon 
discarding Qy~,,7, but then, of course, only from two 
indications. These findings present two aspects. 
Firstly, neglecting the absorption effects seems not 
necessarily fatal with respect to obtaining partial 
structure information from FRED. (However, 
insufficient data quality should be compensated for 
by augmenting the data basis.) Secondly, the results 
of the data fits are supported thus giving additional 
credit to the treatment of anisotropic absorption. 

Concluding remarks 

For X-ray diffraction from a non-perfect crystal, the 
occurrence of AAS in the vicinity of an absorption 
edge requires, in principle, the simultaneous con- 
sideration of both X-ray transmission through and 
kinematic Bragg diffraction in the crystal. Due to 
AAS-induced pleochroism and birefringence the 
properties of the radiation arriving at a diffracting 
volume element d V, i.e. a crystallite inside the mosaic 
crystal, are generally different from those of the 
primary beam. Likewise are the properties of the 
radiation emerging from the crystal different from 
those of the radiation diffracted by the element under 
consideration. As a consequence, not only the polari- 
zation correction but also the absorption correction 
can no longer be factorized in the description of the 
total diffracted intensity. Instead, the intensity contri- 
bution of each volume element has to be worked out, 
and the subsequent integration over the crystal 
volume describes then the observable reflection 
intensity. 

Both processes, transmission and diffraction in 
presence of AAS, have been subjects of separate 
studies (PKF and KPE) giving experimental evidence 
of the applicability of the respective models. The 
present contribution merges the two models into one 
which (apart from Lorentz and extinction corrections) 
describes the observations directly in terms of the 
crystal structure, of the isotropic (non-resonant and 
resonant) scattering, of the anisotropic resonant scat- 
tering (AAS) and of the properties of both radiation 
and crystal. Neglecting AAS restores the conventional 
formalism. The model is valid for totally polarized 
and non-polarized radiation. [General polarization 
can also be handled by introducing the Stoke's for- 
malism as used by Fanchon & Hendrickson (1990).] 

The intimate relation between structure factor and 
refractive index (optical theorem, Kramers-Kronig 
relation) implies that polarization-dependent diffrac- 
tion and transmission effects can be highly correlated. 
However, the degree to which AAS can modify the 
transmission depends on the weight of the partial 
structure of the absorbing 'edge' atoms with respect 



A. KIRFEL AND A. PETCOV 259 

to that of the rest structure. This is because for scatter- 
ing in the forward direction all atomic geometric terms 
are unity. Thus, for Y~ Zeage<< Y. Zres,, an anisotropy 
of the refractive index will be small, whereas for the 
opposite case anisotropy effects of transmission can 
be considerable. Such a distinction cannot be made 
for the diffraction under 2 0  ~ 0 °. Then, . the AAS 
contributions mix with the structure factor (including 
AS) so that they generally gain importance with 
increasing scattering angle and /or  (systematically or 
accidentally) decreasing reflectivity. Though this 
applies to all reflections, the effects of AAS become 
particularly evident for the space-group 'forbidden' 
reflections due to screw axes and/or  glide planes 
which may be no longer systematically extinct. Since 
these reflections are due exclusively to the partial 
structure of the 'edge' atom(s), they are of special 
interest. Firstly, they simplify the model considerably; 
secondly, they consist of complete information about 
AAS including its spatial relation with respect to the 
chemical bonds; thirdly, they reflect the projection 
of the partial structure onto the respective crystal axes 
and /or  zones. Thus, they may be exploited for partial 
structure analysis without requiring any detailed 
knowledge about the resonance itself. In some cases, 
even scaling of the FRED intensities is not required. 
Such a case is space group P2~2~2~. 

The experimental evidence collected within 7 d of 
beam-time allocation and reported in the second part 
of this paper gives direct proof of the occurrence of 
AAS in LiHSeO3 (at the Se K-absorption edge) and 
of the validity of the underlying scattering model. 
Satisfactory agreement is obtained for the observed 
intensity variations upon rotation about the scattering 
vector of both "forbidden' and allowed reflections. 
Evidence is also obtained for the correct treatment 
of transmission. We are, however, well aware of the 
fact that the experimental basis is not adequate (quan- 
titatively rather than qualitatively) for a definite 
judgement. (This would require measurements on a 
larger number of reflections demanding an improved 
experimental technique, in particular higher speed.) 
Thus, future work is planned on a conventional 
diffractometer using the bathing method. This is 
expected to yield a larger data set (including allowed 
reflections) permitting a quantitative separation of 
diffraction and transmission effects by refinement 
techniques. 

The experimental proof of the predicted possibility 
of obtaining partial structure information, here to 
locate the Se atom in the asymmetric unit, from only 
a few 'forbidden' reflections is another finding of this 
study. Again, a larger experimental base is needed 

for more experience with the practical benefits of the 
method. At present, it seems therefore too early for 
far-reaching statements. Nevertheless, the outcome is 
promising and suggests various applications on other 
compounds. One interesting case is a large organic 
structure with two or more different 'edge' elements, 
one atom of each per asymmetric unit. Knowing the 
different 'edge' atom positions in the molecule, one 
should be able to confine its orientation and location 
to a limited number of possibilities to be explored in 
combination with other methods of structure solution. 
Another option concerns the determination of cation 
distributions in known mineral structures. Model 
calculations for olivine, spinel and garnet show that 
in each case only one of the two cation positions, 
M1 and M2, contributes to FRED. Provided there 
is AAS at all, the signal will be proportional to the 
squared occupancy of that position by the 'edge' 
element under consideration. Thus, although the 
investigation of AAS-induced FRED will hardly 
become a standard technique, it is conceivable that 
it may be a complementary tool in the determination 
of complex structures. 
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